冷冻电子断层扫描

冷冻电子断层扫描(CryoET)用于分辨细胞环境内的生物分子,分辨率达到前所未有的亚纳米级,为研究分子社会学开启了一扇窗。在这一尺度下,仅通过形状就可以识别各个蛋白质,而不需要任何标记。但是,亚纳米分辨率下的成像伴随着一个重大的挑战:您需要找到并精准定位感兴趣的部位。

徕卡显微系统提供先进的冷冻电子断层扫描解决方案,使用冷冻光学显微镜进行快速、高分辨率的成像和精确的图像数据传输,同时在整个工作流程中保持最佳的冷冻条件。

1、什么是冷冻电子断层扫描?

使用冷冻电子断层扫描(也称为电子断层扫描),可以在原生和功能状态下以三维分子分辨率分析蛋白质间相互作用。样本在一系列受控的位置上倾斜时,会成像为一系列的二维图像。由此产生的图像“切片”可以组合起来,生成样本的三维重建图像。

2、典型的CryoET工作流程中有哪些挑战?

在典型的CryoET工作流程中,最大挑战是难以确定包含要成像的细胞或蛋白质的精确感兴趣区域。目标定位反复失败会导致过程非常耗时,最终浪费昂贵的电子显微镜(EM)成像时间。工作流程中的另外两个挑战包括确保样本质量和冰层厚度始终如一,以及在将样本传送到冷冻透射电镜之前使样本保持充分玻璃化。

3、CryoET工作流程包含哪些步骤?

该技术涉及样本的制备,样本在电子显微镜载网上,然后迅速陷入液氮中冷冻,使样本玻璃化,防止冰晶形成。

为了进行高分辨率的冷冻断层扫描,成像的标本切片厚度不应大于300纳米。为了观察样本的“较厚”部分(如细胞体),必须将样本减薄。除了冷冻超薄切片技术外,使用专门或多模态的冷冻扫描电子显微镜进行聚焦离子束(FIB)研磨是一种首选方法。两个离子束窗口的定位应确保在感兴趣区域内形成厚度大约200纳米的薄冰片(薄片),以便进行冷冻电镜电子断层扫描。

现在可以用冷冻透射电子显微镜扫描制备的样本,然后必须进行数据重建过程,将二维图像重建为单一的三维模型。

如何用冷冻光学显微镜克服冷冻电子断层扫描(CryoET)的挑战?

冷冻光学显微镜可以在两个重要方面对CryoET工作流程做出积极贡献。

首先,光学显微镜有助于评估样本的质量。使用冷冻光学显微镜可以快速了解样本的冷冻质量和冰层厚度,以及样本的分布是否适合进一步处理。徕卡的冷冻解决方案可确保样本在这些步骤中保持安全和活性。

其次,在提高工作流程效率方面,冷冻光学显微镜的最大潜力是能够在启动时间和成本密集型的冷冻电镜制备工作之前,更加精准地定位感兴趣的结构。徕卡的冷冻光学显微镜解决方案能够将目标结构的图像和坐标输出到后续的电镜步骤,从而显著缩短电镜成像时间。

右图介绍:一个完整载网的焦面总览,有不同的模式来识别载网缺陷、对齐标志和目标分布。HeLa细胞由德国海德堡欧洲分子生物学实验室Mahamid团队的Ievgeniia Zagoriy提供。蓝色–Hoechst,细胞核;绿色–MitoTracker Green,线粒体;红色–Crimson荧光珠和Bodipy,脂滴。一个载网方格的边缘长度:90微米,比例尺宽度:35微米。完整载网直径:3毫米

莱茵衣藻,两种不同类型的鞭毛内转运蛋白IFT-NeonGreen和IFT-mCherry。样本由德国德累斯顿马克斯-普朗克分子细胞生物学与遗传学研究所的Pigino实验室提供。

Coral Cryo简介:迄今最有效的CryoET工作流程

徕卡提供专用的三维冷冻电子断层扫描工作流程解决方案,可确保样本活性、进行质量检查,最重要的是确保三维目标定位机制精准可靠,从而克服各种典型的挑战。我们优化的硬件(包含冷冻台和传送梭)配合先进的CryoET目标定位软件,以及适用于冷冻聚焦离子束(FIB)或真空冷冻传送(VCT)载物台的各种无缝集成和传送选项。

EM Cryo CLEM THUNDER 成像系统

THUNDER EM Cryo CLEM成像系统是一款采用THUNDER技术光电联用的冷冻光学显微镜。它提供了成功进行结构生物学实验研究所需的成像数据和安全冷冻条件。通过高分辨率、实时去除焦外模糊信号的THUNDER技术成像,从而精确识别感兴趣的细胞结构,然后将样本无缝传送到电子显微镜。

右图介绍:使用纤维状肌动蛋白染料 (mcherry)、TGN46 (GFP)和DNA (Hoechst 33342)的HeLa细胞样本由英国伦敦弗朗西斯·克里克研究所的Marie-Charlotte Domart博士和Lucy Collinson博士提供。

如何选择:冷冻宽场还是冷冻共聚焦?

特点共聚焦Thunder(宽场)
灵敏度 *
速度 *
横向分辨率***
纵向分辨率***
冷冻成像条件下染料激发和发射的优化***
抑制自发荧光(样本或碳层)* 
目标定位和导出三维二维
扫描电镜的叠加共聚焦三维图像
扫描电镜的叠加共聚焦三维图像(包含聚焦离子束视图)

实现精准的三维体目标定位

在这篇文章中,了解无缝衔接的徕卡显微系统冷冻电子断层扫描工作流程Coral Cryo如何使用共聚焦超分辨率更精准定位您感兴趣的结构。该工作流程可减少并优化工作流程的步骤,改善样本的装载和传送,因此可提高CryoET工作流程的效率。

顶部扫描电镜视图(左图)和聚焦离子束视图(右图)的超分辨率三维共聚焦叠加图像。叠加是使用荧光珠作为相关性标志来执行的。HeLa细胞标记如下:细胞核由Hoechst标记,蓝色;线粒体由MitoTracker Green标记,绿色;脂滴由Bodipy和Crimson荧光珠标记,红色)。比例尺:20微米。细胞由德国海德堡欧洲分子生物学实验室Mahamid团队的Ievgeniia Zagoriy提供,扫描电镜/聚焦离子束图像由该团队的Herman Fung提供。