活细胞成像

使用现在已开发的各种荧光蛋白和多色探针几乎可以标记任何分子。 对囊泡、细胞器、细胞和组织中的蛋白质动力学成像的能力为了解细胞在健康和疾病状态下如何工作提供了新的洞察力。 这些包括有丝分裂、胚胎发育和细胞骨架变化等过程的时空动态。

研究活细胞时,常见的障碍包括光毒性和光损伤。 要捕捉快速的生物过程,关键是保持细胞健康并获得清晰的图像,确保数据可靠、无伪影。 活‐细胞显微成像通常需要在图像质量与细胞健康之间作出取舍。 在成像过程中必须保持特定的环境条件,以免细胞发生变化。

各种高性能的徕卡成像解决方案可以克服活细胞成像的这些挑战,有助发现细胞生理学和动力学方面的新信息。

您的活细胞成像需求

要想成功地进行活细胞成像实验,使用合适的平台至关重要。 在选择用于活细胞成像的光学显微镜时,应考虑以下 3 个变量:检测器灵敏度(信噪比)、样本活性和图像采集速度。 适合活细胞应用的方法能够在不损伤细胞的情况下对动态事件成像,因为细胞损伤会影响结果。 活细胞成像主要使用荧光显微镜进行。

Visualization of brain organoids with a THUNDER Imager Live Cell – Nucleus (DAPI), p-vimentin (AF488), DCX (AF568), PAX6 (AF647). Uncleared human brain organoid (4 colors); Image courtesy by Atria Kavyanifar, M.Sc. (supervised by Prof. Dr. Lie, Prof. Dr. Winner) University Clinic Erlangen, Germany).
Mica。观察样本所需的一切都集中在一个易于使用的系统中。同时 4 色宽场,共聚焦分辨率,通过人工智能支持分析。

徕卡显微系统的 THUNDER 成像系统、一款 Microhub 的 Mica、STELLARIS 共聚焦平台和 FLIM 提供了最新的宽场和共聚焦成像创新技术,可快速进行 3D 活细胞成像。

宽场显微镜可灵活激发和快速采集,通常用于对细胞动态和发育进行长时间成像。 共聚焦显微镜通常用于研究亚细胞动态事件。 多光子显微镜可使用较长波长的光激发,可减少光漂白并延长细胞活性。 最后,荧光寿命成像 (FLIM) 可用于研究细胞中的快速动态信号事件。

徕卡DMi8倒置显微镜 DMi8 S 高速成像平台

模块化的 DMi8 倒置显微镜是 DMi8 S 平台的核心。DMi8 S 平台是适用于日常活细胞研究的完整解决方案。不管是精确跟踪培养皿中单个细胞的发育,筛选多个分析,获取单分子级的清晰度,还是梳理复杂过程的行为,DMi8 S 系统都能让您看得更多、看得更快,让您发现隐藏的信息。

Live cell imaging system DMi8

成像过程中的细胞活性和动力学

徕卡显微系统为您提供活细胞成像方面的智能创新。 我们的解决方案可帮助您获得最佳的图像质量,同时保护好您的样本。 大多数细胞过程在三维空间中随着时间的推移进行。 因此,若要掌握全面的情况,必须以四个维度(XYZ 和时间)对细胞成像。 延时成像方法可捕捉从几秒到几个月内的细胞事件。 也可以在特定时间点对细胞重复成像。 为了在这个过程中保护细胞活性,活细胞成像时需要温度、酸碱度和湿度都受到控制。 曝光量也应在最低限度,以免发生光毒性。

徕卡显微系统提供的成像解决方案有助于优化您对活细胞的研究,即使是长时间的研究也同样如此。 它们能提供必要的图像对比度和分辨率,有助动态事件的分析。 有些徕卡系统还可以实现高速成像,可以避免相同时间点的标签之间发生时空失配,因此不会错过任何关键的细胞事件。

活细胞温和成像

使用STELLARIS,您不必再为了获得出色的图像而损伤样本健康。 无论您是需要很长的采集时间进行高分辨率的3D图像重构,还是需要高帧频来捕捉高速动态事件,我们的高效信号探测技术可确保您在防止样本受到光漂白和光毒性影响的前提下完成所需要的实验。